

Part Number: 1874A

CAT6+ Horizontal Bonded-Pair, 4pr, UTP, LS-PVC Jkt, CMP

Product Description

CAT6+ (350MHz), 4-Bonded-pairs, U/UTP-unshielded, Plenum-CMP, Premise Horizontal cable, 23 AWG solid bare copper conductor, FEP insulation, ripcord, Flamarrest® jacket

Technical Specifications

Product Overview

Environmental Space:	Plenum
Suitable Applications:	Premise Horizontal Cable, Gigabit Ethernet, 100BaseTX, 100BaseVG ANYLAN, 155ATM, 622ATM, NTSC/PAL Component or Composite Video, AES/EBU, Digital Video, RS-422, Noisy Environments

Physical Characteristics (Overall)

Conductor

AWG	Stranding	Material	No. of Pairs
23	Solid	BC - Bare Copper	4
Condu	ctor Count:		8
Total N	Number of Pa	airs:	4
Condu	ctor Size:		23 AWG

Insulation

Color Chart

Number	Color
1	White/Blue Stripe & Blue
2	White/Orange Stripe & Orange
3	White/Green Stripe & Green
4	White/Brown Stripe & Brown

Outer Jacket Material

Material	Material Trade Name	Nominal Diameter	Ripcord
LS PVC - Low Smoke Polyvinyl Chloride	Flamarrest®	0.365 x 0.165 in	Yes

Electrical Characteristics

Conductor DCR

Max. Conductor DCR	Max. DCR Unbalance
75 Ohm/km	3 %

Capacitance

Max. Capacitance Unbalance	Nom.Mutual Capacitance
49 pF/100m	15 pF/ft

Delay

Frequency [MHz]	Max. Delay	Max. Delay Skew	Nominal Velocity of Propagation (VP) [%]
100 MHz	537.6 ns/100m	25 ns/100m	72 %

High Freq

Frequency [MHz]	Max. Insertion Loss (Attenuation)	Min. NEXT [dB]	Min. PSNEXT [dB]	Min. ACR [dB]	Min. PSACR [dB]	Min. ACRF (ELFEXT) [dB]	Min. PSACRF (PSELFEXT) [dB]	Min. RL (Return Loss) [dB]	Max./Min. Input Impedance (unFitted)	Max./Min. Fitted Impedance
1 MHz	1.9 dB/100m	75.3 dB	75.3 dB	73.4 dB	73.4 dB	67.8 dB	64.8 dB	20.0 dB	100 ± 12 Ohm	100 ± 15 Ohm
4 MHz	3.7 dB/100m	66.3 dB	66.3 dB	62.6 dB	62.6 dB	55.7 dB	52.8 dB	23.0 dB	100 ± 12 Ohm	100 ± 15 Ohm
8 MHz	5.3 dB/100m	61.8 dB	61.8 dB	56.5 dB	56.5 dB	49.7 dB	46.7 dB	24.5 dB	100 ± 12 Ohm	100 ± 15 Ohm
10 MHz	5.9 dB/100m	60.3 dB	60.3 dB	54.4 dB	54.4 dB	47.8 dB	44.8 dB	25.0 dB	100 ± 12 Ohm	100 ± 15 Ohm
16 MHz	7.5 dB/100m	57.2 dB	57.2 dB	49.7 dB	49.7 dB	43.7 dB	40.7 dB	25.0 dB	100 ± 12 Ohm	100 ± 8 Ohm
20 MHz	8.4 dB/100m	55.8 dB	55.8 dB	47.3 dB	47.3 dB	41.8 dB	38.8 dB	25.0 dB	100 ± 12 Ohm	100 ± 8 Ohm
25 MHz	9.5 dB/100m	54.3 dB	54.3 dB	44.9 dB	44.9 dB	39.8 dB	36.8 dB	24.3 dB	100 ± 15 Ohm	100 ± 8 Ohm
31.25 MHz	10.6 dB/100m	52.9 dB	52.9 dB	42.2 dB	42.2 dB	37.9 dB	34.9 dB	23.6 dB	100 ± 15 Ohm	100 ± 8 Ohm
62.5 MHz	15.4 dB/100m	48.4 dB	48.4 dB	33.0 dB	33.0 dB	31.8 dB	28.9 dB	21.5 dB	100 ± 15 Ohm	100 ± 8 Ohm
100 MHz	19.8 dB/100m	45.3 dB	45.3 dB	25.5 dB	25.5 dB	27.8 dB	24.8 dB	21.0 dB	100 ± 15 Ohm	100 ± 8 Ohm
155 MHz	25.1 dB/100m	42.4 dB	42.4 dB	17.3 dB	17.3 dB	24.0 dB	21.0 dB	21.0 dB	100 ± 15 Ohm	100 ± 8 Ohm
200 MHz	29.0 dB/100m	40.8 dB	40.8 dB	11.8 dB	11.8 dB	21.7 dB	18.8 dB	21.0 dB	100 ± 15 Ohm	100 ± 8 Ohm
250 MHz	32.8 dB/100m	39.3 dB	39.3 dB	6.5 dB	6.5 dB	19.8 dB	16.8 dB	18.0 dB	100 ± 20 Ohm	100 ± 8 Ohm
300 MHz	36.4 dB/100m	38.1 dB	38.1 dB	1.7 dB	1.7 dB	18.3 dB	15.3 dB	18.0 dB	100 ± 20 Ohm	100 ± 8 Ohm
310 MHz	39.8 dB/100m	37.1 dB	37.1 dB	-2.6 dB	-2.6 dB	16.9 dB	13.9 dB	17.0 dB	100 ± 22 Ohm	100 ± 8 Ohm
350 MHz	43.0 dB/100m	36.3 dB	36.3 dB			15.8 dB	12.8 dB	14.0 dB	100 ± 32 Ohm	100 ± 8 Ohm
400 MHz	46.0 dB/100m	35.5 dB	35.5 dB			14.7 dB	11.7 dB	14.0 dB	100 ± 32 Ohm	100 ± 8 Ohm
500 MHz	48.9 dB/100m	34.8 dB	34.8 dB			13.8 dB	10.8 dB	14.0 dB	100 ± 32 Ohm	100 ± 8 Ohm
550 MHz	51.8 dB/100m	34.2 dB	34.2 dB			13.0 dB	10.0 dB	14.0 dB	100 ± 32 Ohm	100 ± 8 Ohm

Voltage

UL Voltage Rating 300 V RMS

Temperature Range

Installation Temp Range:	0°C To +50°C
UL Temp Rating:	75°C
Storage Temp Range:	-20°C To +75°C
Operating Temp Range:	-20°C To +75°C

Mechanical Characteristics

Bulk Cable Weight:	35 lbs/1000ft
Max Recommended Pulling Tension:	40 lbs
Min Bend Radius/Minor Axis:	0.5 in
Min Bend Radius/Installation:	1.75 in

Standards

NEC/(UL) Specification:	MP		
CEC/C(UL) Specification:	CMP		
ISO/IEC Compliance:	11801 ed 2.2 (2011) Class E		
CPR Euroclass:	ca		
Data Category:	ategory 6		
ANSI Compliance:	116-732-2013 Category 6, ANSI/NEMA WC-66 Category 6		
Telecommunications Standards:	NSI/TIA-568-C.2 Category 6		
IEEE Specification:	IEEE 802.3bt Type 1, Type 2, Type 3, Type 4		
Third Party Performance Verification:	Category 6		

Applicable Environmental and Other Programs

EU Directive 2000/53/EC (ELV):	Yes
EU Directive 2002/96/EC (WEEE):	Yes
EU Directive 2003/11/EC (BFR):	Yes
EU Directive 2003/96/EC (BFR):	Yes
EU Directive 2011/65/EU (ROHS II):	Yes
EU Directive 2012/19/EU (WEEE):	Yes

EU Directive 2015/863/EU:	Yes
EU Directive Compliance:	Yes
EU CE Mark:	Yes
EU REACH SVHC Compliance (yyyy-mm-dd):	2017-07-10
EU RoHS Compliance Date (yyyy-mm-dd):	2006-07-01
CA Prop 65 (CJ for Wire & Cable):	Yes
MII Order #39 (China RoHS):	Yes

Suitability

Suitability - Aerial:	No
Suitability - Burial:	No
Suitability - Hazardous Locations:	No
Suitability - Indoor:	Yes
Suitability - Non-Halogenated:	No
Suitability - Oil Resistance:	No
Suitability - Outdoor:	No
Suitability - Sunlight Resistance:	No

Flammability, LS0H, Toxicity Testing

UL Flammability:	NFPA 262 Plenum (UL 910)
CSA Flammability:	FT6
UL voltage rating:	300 V RMS

Plenum/Non-Plenum

Plenum (Y/N):	Yes	

Part Number

|--|

Variants

Item #	Color	Footnote
1874A 0101000	Black	С
1874A D151000	Blue	С
1874A D15A1000	Blue	
1874A F6H1000	Gray	С
1874A F6HA1000	Gray	
1874A 005A1000	Green	
1874A 8771000	Natural	С
1874A 877A1000	Natural	
1874A 003A1000	Orange	
1874A 0071000	Purple	С
1874A 007A1000	Purple	
1874A 002A1000	Red	
1874A 0091000	White	С
1874A 009A1000	White	
1874A 004A1000	Yellow	

Footnote:	C - CRATE REEL PUT-UP.
Patent:	https://www.belden.com/resources/patents

Product Notes

Notes:	Values above 350 MHz are for Engineering Information Only. Print Includes Descending Footage Markings from Max. Put-Up Length to 0.

© 2019 Belden, Inc

All Rights Reserved.

Although Belden makes every reasonable effort to ensure their accuracy at the time of this publication, information and specifications described here in are subject to error or omission and to change without notice, and the listing of such information and specifications does not ensure product availability.

Belden provides the information and specifications herein on an "ASIS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Belden be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary damages) whatsoever, even if Belden has been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information or specifications described herein.

All sales of Belden products are subject to Belden's standard terms and conditions of sale.

Belden believes this product to be in compliance with all applicable environmental programs as listed in the data sheet. The information provided is correct to the best of Belden's knowledge, information and belief at the date of its publication. This information is designed only as a general guide for the safe handling, storage, and any other operation of the product itself or the one that it becomes a part of. The Product

Disclosure is not to be considered a warranty or quality specification. Regulator regulations based on their individual usage of the product.	ry information is for guidance purposes	s only. Product users are responsible fo	r determining the applicability of legi	slation and