

The TrueSite™ Solution

TrueSite Matrix and TrueSite Handheld provide scalable mobile network and service testing with an Android®-based tablet or smartphone

The introduction and rapid growth of smartphones and tablets within the wireless market has created congestion problems in networks worldwide. User behavior, driven by the new smartphone applications, has not only increased data usage, but also signaling and overall network issues. Mobile network operators need a solution that can replicate these issues on the same type of devices in the environments where customers experience them.

The ultra-portable cloud-enabled TrueSite solution makes it easy to test any indoor environment—including airports, stadiums, malls, and offices. TrueSite can be deployed on a single smartphone or as part of a multidevice system controlled from an Android™ tablet. Using an Android-based tablet app or smartphone, a single technician can discreetly gather data from up to six smartphones and a single receiver. TrueSite minimizes repeat data-capture walks and post-processing by immediately identifying and geo-locating missing/faulty antennas and macro-ingress issues during collection. TrueSite is the optimal solution for all your indoor testing needs.

Comprehensive, real-time fault detection tools detect missing/faulty antennas, macro ingress, blocked/dropped calls, connection failures, and test failures. Identifying faults in real time lets you resolve problems immediately, eliminating wasteful retests. This saves hours in getting the network up and running, and is particularly important during venue testing where access is very limited and re-testing is often not an option.

Plus, the cloud-enabled Viavi StrataSync service lets you manage, install, and update all your TrueSite devices as well as store and access your test data over-the-air from a central location.

Key Benefits

- Helps quickly deploy and troubleshoot DAS and small cells
- Tests faster with real-time problem resolution
- Enables unobtrusive, discreet testing
- Verifies hot spots quickly with active/ passive WiFi testing
- Quickly validates services without writing scripts
- Ultra-portable with an intuitive user interface

Key Features

- Tablet app controls up to six devices and one receiver
- Automatically identifies missing/faulty antennas and macro-ingress issues during collection
- Fully iBwave and RANPlan design compatible and floor plans can be added as picture files (jpg/gif/bmp)
- Supports LTE, WCDMA, GSM, CDMA/EV-DO, RRC/NAS, LibPCAP, and VoLTE
- Qualcomm DLF format logging
- StrataSync asset management including flexible license management and new floating licenses transferable between different phones
- Customer installable*

^{*} Contact Viavi for supported phones.

Easy-to-Use Network Monitoring Tools

TrueSite is a compact, discreet, highly portable optimization solution that enables engineers to perform tests in complex indoor environments using a single TrueSite Handheld-enabled smartphone or TrueSite Matrix™ tablet-based Matrix solution. Engineers can test key services, such as voice, data, and VoLTE while monitoring and logging all key network parameters. Devices can even be configured to start when the device is powered on, enabling engineers with less experience to also perform tests and collect data.

TrueSite supports a wide variety of smartphones and tablets and collects a wide range of network information from areas that are difficult to reach using typical drive-test tools. More importantly, it enables engineers to test the indoor network from the perspective of a smartphone subscriber. Easy configuration and full integration with the RANAdvisor platform provides a complete test collection and analysis solution.

The larger screen size of Android tablets makes it faster and easier to set up measurements and analyze results, so engineers can perform more tests in less time. The bigger display also shows measurement results and route maps simultaneously during replay for simpler, faster fault resolution.

With three simple operating modes for testing and user flexibility, TrueSite lets absolutely anyone conduct tests, giving providers ultimate resource flexibility.

The flexible GUI enables instant access to all test capabilities with a single touch.

OneTouch

OneTouch mode lets anyone who can power on the phone perform preconfigured tests without any intervention. Results can be automatically transferred via FTP or HTTPS to a central server for detailed analysis.

A customizable default screen lets anyone use the device without any training and start testing immediately.

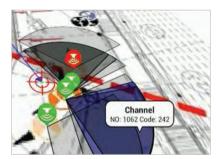
TestMeNow

TestMeNow mode offers additional flexibility for users without requiring detailed RF knowledge. TestMeNow can be configured to perform three tests, a voice test, an HTTP/HTTPS test (connect to a

website), and an FTP (put and get) test, so providers can test their network the way their customers use it. Users can preconfigure, or amend, these three simple tests to verify the three key services delivered to customers at the push of a button with simple pass/fail indicators. All results are captured and stored and transferred via FTP or HTTPS to a central server for detailed analysis.

Engineering Mode

Engineering mode provides ultimate flexibility, letting users execute any test while providing access to all the measurements and tests being performed. The flexible graphical sequencer lets engineers preconfigure complex test scenarios for manual or automatic execution.


TrueSite Matrix

When part of a multidevice solution, TrueSite Matrix software running on a tablet can control up to six handheld devices and a single receiver. It includes the following modules:

- · Indoor Test Manager
- Indoor Fault Detection
- Receiver Measurements

Indoor Test Manager

This app provides all the capabilities required to configure all devices and tests including loading required iBwave floor plans. The app also provides real-time control for executing, recording, and mapping results. 3D-perspective mapping and navigation controls accurately locate and pinpoint problems, making testing easier and more intuitive. Floor plans can be imported as iBwave plans (with or without a transmitter file) or photos (in jpg/gif/bmp file formats) which can be taken with the tablet's camera. As you navigate through the test route, cell sectors will illuminate on the GUI as you approach them, indicating the sector's transmission direction and configuration. Up to 16 measurements can be configured for display as an overlay on the map in real time. The Indoor Test Manager also enables measuring in exterior surroundings with the assistance of GPS automated location.

Indoor test manager

Indoor Fault Detection

Optional fault detection tools enable the real-time identification and resolution of missing or faulty antennas, zone overshooting, and macro ingress.

TrueSite compares the antenna specifications defined in the iBwave or cell site database file in real time with the measured values during capture and automatically reports any differences. For example, if an internal LTE antenna should be transmitting on PCI 21, and TrueSite detects that it is transmitting on PCI 35, it will alert the user so they can pause the capture and take remedial action before continuing. In the case of macro ingress, TrueSite automatically reports the macro cell site levels throughout the building as well as identifying any device that hands over to the macro network. This level of detail lets you adjust the network to ensure that users connect to the internal antennas rather than the external macro cell.

Indoor fault detection

Receiver Measurements

TrueSite captures measurements from a portable, battery-operated DRT 4311B or PCTel IBFlex receivers (ordered separately) housed in the TrueSite messenger bag. Receiver data augments data captured from handsets to provide additional information in real time so you can resolve problems faster.

Receiver measurements

Messenger Bag

The discreet, ultra-portable messenger bag stores up to six devices and a receiver. Additional pockets provide additional storage for a tablet and any accessories that you may need when testing. The bag can be configured as an over-the-shoulder messenger bag or as a small backpack. The bag is included at no additional charge with every purchase of Indoor Test Manager option E5643B-120.

TrueSite Handheld

This section describes the main features of TrueSite Handheld software and applies to both single handheld solutions and multidevice solutions controlled from a tablet with TrueSite Matrix.

Parallel Test Sequencer

Customers use apps such as voice, web, and e-mail in parallel, so operators must be able to test their network the same way a user experiences it. That's why Viavi introduced the unique parallel test sequencer. The sequencer lets users create and run serial and parallel test sequences directly on the device to simplify test case setup when stress testing the network. The graphical display updates as the test runs to show each test's status. This capability clearly shows which tests are running as well as which tests have passed or failed. This highly graphical solution provides unparalleled flexibility and visibility on a handheld network test tool.

A simple GUI lets users configure tests by simply touching the test and running it serially or in parallel, which was never possible in a handheld device until now. The easy-to-understand screen displays serial tests from top to bottom, with parallel tests shown in the same row. Engineers can even share test sequences with other users to achieve consistent testing across dispersed teams.

Comprehensive test scenarios can be created and executed quickly, with failed tests indicated in red, passed tests in green, and tests being executed in grey. The graphical sequencer also supports device forcing features for the frequency band and technology of operation.

Remote Control

Users can also control TrueSite handhelds via SMS from a controlling device to either single or multiple test devices. This capability enables deploying TrueSite at an unattended location and sending SMS command messages and updated files to engineers working in the field. The following command messages are supported: START, STOP, STATUS REPORT, LOAD LOCAL CONFIG FILE (stored on device), LOAD REMOTE CONFIG FILE (from an FTP server), LOAD LOCAL SEQUENCE FILE (stored on the device), and LOAD REMOTE SEQUENCER FILE (from an FTP server). Viavi also provides an application for Android phones that will send a START or STOP SMS to one or multiple handhelds.

Synchronize Multiple TrueSite Handhelds via Bluetooth®

In addition to using the multidevice TrueSite Matrix app, it is possible to control and synchronize up to six handhelds, typically located in a messenger bag, from a control handheld. This is a standard capability of our handheld solution and does not use the TrueSite Matrix software options or receiver described earlier. When recording is started on the controlling handheld, a Bluetooth message is sent to remote handhelds, instructing them to begin recording. This guarantees synchronization which is crucial during this type of testing. During outdoor collection, location information is synchronized via GPS.

During indoor collection, users can use predefined waypoint files that guide them through a predetermined test route or use the "I-am-here" capability to follow a different route. Each waypoint or I-am-here action on the control handheld will send a message via Bluetooth to all remote handhelds, synchronizing their position and test results within the test route with the controlling handheld.

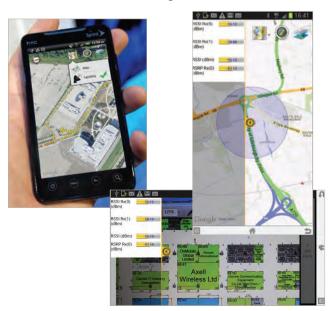
This capability provides a scalable, portable test solution that can record up to eight devices: one controlling device and up to seven devices in the backpack. This versatile solution is useful for verifying multiple operators in parallel, generating load at specific locations, testing small cells, or testing WiFi hotspots.

Visualization and Mapping

Users can view all measurements in Google maps so they can locate and resolve problems faster. Both street map and satellite views are supported indicating where you are, where you have been, and the signal strength of the area driven.

A cell-site database can be loaded into the device that shows the actual cell sites being tested on one display.

- Loads cell site files (compatible with drive test files)
- Shows site locations on indoor and outdoor maps
- Shows serving cell for current location
- Shows cell site name on parameter list view


Geo-Located Indoor Testing

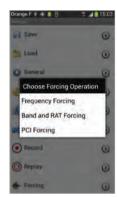
Increased testing of indoor environments requires the ability to locate measurements on a map without GPS satellites. Creating waypoints and using outside GPS measurements makes it easy to view indoor measurements on the mapping interface. Also, it allows for logging the height of the measurements to create complex views of multistory buildings.

- · Create and use waypoints to direct collection routes
- Simplify indoor map location using GPS outside the building
- Log indoor map height when testing multiple floors

View Measurements on Indoor Floor Plans and Outdoor Maps

When testing indoors or outdoors, you can define up to eight different measurements to be displayed in real time on floor plans or on maps. This lets you make instant decisions on performance without the need to wait for post-processing to determine if a problem exists. These measurements can be displayed on an individual TrueSite handheld device or on the TrueSite controlling tablet.

Forcing and Locking


When deploying a new cell site, adding a new overlay frequency at an existing cell site, or revalidating the existing frequencies deployed, the Viavi solution can lock the device, without requiring a power cycle, to a specific RAT, band, frequency, channel, or PCI, guaranteeing that it will remain at that setting despite network conditions so users can complete the test and validate the frequency band. Forcing actions can also be applied during test sequences for even easier testing.

When testing an existing or deploying a new frequency, engineers must be able to force/lock their phone to the specific channel under test, irrespective of where they are within the cell coverage area. Using only a commercial handset, Viavi can lock to a specific WCDMA/ UARFCN frequency without risking handovers to other frequencies or technologies, so providers can generate revenues faster. LTE EARFCN and PCI locking is also supported on commercial devices. An alert will be displayed on the screen when it is in a locked mode to alert engineers in case they do not want to use the device in locked mode.

The Forcing Functions table summarizes the available forcing capabilities. For details about all the forcing capabilities and devices supported, refer to the configuration guide or contact Viavi.

Forcing Functions			
Function	Device		
UARFCN preference	HTC		
UARFCN lock	Samsung S3/S4/S5		
EARFCN preference	Samsung S3/S4/S5		
Band, RAT forcing	Samsung S3/S4/S5		
Airline mode forcing	Samsung S3/S4/S5		
EV-DO channel lock	Samsung S3		
LTE PCI lock	Samsung S4 (i9506, i9507), S5 (G900F/P/A/I,V,W8,R4,6V)		
Note 3	SM-N900 (T, V)		

Contact Viavi for others.

Customizable for the Needs of Each Engineer

Displaying hundreds of parameters helps engineers see everything they want; however, in many cases, they are only interested in specific parameters for each technology. The customizable GUI lets each engineer configure their device to display only the parameters they need to perform their work. For engineers who share devices, each engineer can save their customized view to a profile on the device that they can load when they use the device.

Users can:

- · Customize screen views
- Choose the number of parameters needed
- Save multiple screen layouts
- Recall saved screen layouts during recording or playback
- Share screen layouts with other users

User-Defined Interactive Charting

Create your own specific line charts with just the measurements that you need to view.

Up to four different charts can be defined to appear in the RF Measurement screen to enable real-time analysis over the time of selected measurements such as RSRP. Up to four measurements can be defined per chart. Thirteen charts are delivered with the software, however, users can create and save their own charts for future use. An example LTE chart is shown opposite.

Interactive charting allows any measurement displayed on the RF measurement screen to

be charted during testing by tapping the required measurement. Multiple measurements can be charted as shown opposite. When finished, tapping the measurement will remove the chart.

eMBMS Analysis

Evolved multimedia broadcast multicast service (eMBMS), also referred to as LTE broadcast, was initially introduced in 3GPP Release 9. eMBMS is a point-to-multipoint communication service where data packets are simultaneously transmitted from a single source to multiple users. It allows content delivery to multiple users simultaneously at a fractional resource cost.

To ensure eMBMS is delivering on its promises of capacity and user experience, service providers need a simple tool for validation and optimization. TrueSite provides key KPIs and parameters that show eMBMS performance with visibility into the customer experience. This enables quicker network configuration for optimal performance.

Optimizing eMBMS entails choosing the maximum MCS that can meet the coverage requirement. Selecting a low MCS for eMBMS data will provide coverage at the expense of valuable LTE resources that can be used for unicast. Collecting geo-referenced eMBMS SNR and BLER metrics can be used to verify that the appropriate MCS value is selected for the given MBSFN area. Processing UE modem logs lets the engineer suggest changes to the MCS configuration and FEC percentages to maximize the spectral efficiency of a given MBSFN service area.

Key supported eMBMS parameters include:

- Layer 1 measurements from the chipset
- LTE ML1 PMCH results parameters such as BLER, throughput, and RSRP
- LTE ML1 eMBMS config parameters
- LTE eMBMS active bearer list information
- LTE ML1 PMCH decode parameters such as unicast SNR, number of resource blocks, number of transport blocks, and LTE ML1 eMBMS whitened matrices
- Single view chart SINR0, SINR1, and eMBMS SNR

Unicast, broadcast, and multicast parameters

StrataSync™

StrataSync is a cloud-based service that provides asset management, configuration management, and test data management.

Asset Management

Asset management enables the StrataSync administrator to automatically manage and update all devices OTA in a timely and consistent manner, minimizing manual updates and mistakes. It also allows new configuration, sequencer files, and more to be downloaded to any device to ensure all devices have the same versions and deliver consistent results.

Asset Management enables automatic OTA downloading:

- Software upgrades to devices
- Configuration, sequence, map, cell-site database, and threshold files
- iBwave and RANPlan plans and map overlays

StrataSync also tracks your valuable assets' locations and to whom they are assigned. All TrueSite devices report their GPS location, model, Android, kernel, and application version to StrataSync each time the application starts.

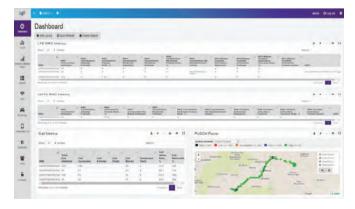
Test Data Management

StrataSync also enables you to automatically upload and securely store all test data result files in the cloud. Result files can be uploaded while a technician is still in the building enabling colleagues for remote post-processing and analysis of the data while the technician gathers data on a different floor or in another area of the building. This remote analysis will help minimize the need to revisit a building as the post-processing engineer can tell the technician on site to perform a retest or to conduct any additional tests before moving to a different building. With StrataSync, the remote engineer can even load a specific sequence onto the technician's device for the additional test.

This ability to have results available in near-real time at a central location also enables you to close out contracts faster by confirming the results are correct and forwarding them to your customer for payment rather than the need to wait for the engineer to return to the office.

StrataSync lets you manage assets, test data, and people with one device.

License Management


StrataSync offers flexible RANAdvisor PC and Truesite licensing which lets customers plan their CapEx based on project usage requirements. It provides full visibility and control, enabling the management of which project, asset, and engineer require which licenses on a simple, easy-to-use dashboard. Errors with wrong licenses, configurations, and test sequences are minimized, and it eliminates manual tracking. And, increased efficiency and time savings positively impact bottom-line OpEx.

StrataSync asset management helps you track test devices with TrueSite.

Rubix™ Real-Time Post Processing

Rubix is a real-time analytics engine that simplifies network management functions and reduces OpEx by minimizing the need for manual drive/walk test post processing, RAN problems can easily be identified in real-time and shared with a limited number of skilled engineers located centrally vs. requiring expertise distributed in the field.

Rubix window showing real-time call metrics

Rubix applications include live event experience benchmarking; macrocell, DAS, and small cell deployments; VoLTE analysis; and, eMBMS troubleshooting.

Key benefits include:

- Cloud-based solution can run in a cluster, improving performance reliability and scalability
- · Accessible anywhere, anytime, and with any device
- Simple GUI interface provides easy-to understand RAN performance data to anyone with minimal product training

Important features include:

- Smart processing engine delivers key KPIs (throughput, dropped calls, and connection attempts) in an easy-to-access, live report
- Near-real-time post processing
- Future-proof cloud-based architecture
- Central and flexible data log location
- · RAN vendor agnostic
- Simple and easy-to-use GUI client

Analysis Options

TrueSite log files can be analyzed in several ways:

- · Directly on the device
- Using RANAdvisor PC software with post-processing tools such as Gladiator™, Windcatcher™, and Actix™
- At a remote location of choice via FTP or HTTPS upload
- Rubix real-time analytics

Measurements and Tests

- AUTOSEND uploads log files via FTP or HTTPS
- Circuit switch fall back (CSFB) key for evaluating LTE and 3G service delivery
- E-mail tests if an e-mail can be sent to itself within a certain time
- EV-DOCH checks the current EV-DO channel and compares it with the requested channel
- Force band
- Force RAT/PCI
- FTP uploads and downloads files from any FTP site such as YouTube.
 Within the FTP test settings, you can configure the test to maintain the
 FTP session, eliminating the need to reconnect to the FTP server each
 time. The test shows the average and total throughput for session, and
 it can be configured to show throughput at user-defined periods during
 the session.
- HTTP configurable to connect to any URL
- iPERF measures maximum TCP and UDP bandwidth
- MMS tests if an MMS can be sent to itself within a certain time
- MT voice tests for incoming calls
- PDPACT performs a PDP activation
- PING test simple network connectivity, round-trip time, and PING connectivity
- POLQA voice quality test (refer to the configuration guide or contact Viavi for a list of supported devices)
- RFTOGGLE enables airline mode for the configured period
- SMS tests if an SMS can be sent to itself within a certain time
- TECHCHK checks if the device is registered to a specific technology such as LTE or WCDMA
- Trace RT/Trace RT change in normal mode, this test runs a trace route
 on a data connection and diagnostically determines the route taken to
 a destination by sending Internet control message protocol (ICMP) echo
 packets with varying time-to-live (TTL) values to the destination. When
 configured in change mode, it will alert to any changes in the IP route
 from the normal test.
- Video displays video on any available network including WiFi
- Voice includes a universal voice test that includes a circuit switch and VoLTE modes
- Sequencer loop within a test's additional settings, you can configure
 a sequence to loop indefinitely with results stored in a single log file.

Measurements

LTE Cell Info Parameters	LTE ML1 Serving Cell Measurements	LTE Serving and Neighbor Parameters	LTE Demodulation Configuration Parameters	LTE RACH Request Parameters	LTE RACH Response Parameters	Summary Parameters	Protocol
Cell identity (28 bits)	RSSI Rx(0) dBm	Serving E-ARFCN	PDSCH RNTI ID	RACH RNTI	RACH response RX time	Satellites visible	RRC protocol
Tracking Area Code (16 bits)	RSSI Rx(1) dBm	Serving physical cell-ID	PDSCH RNTI type	RACH preamble		Satellites tracked	NAS protocol
	RSSI dBm]	Number of Tx	Cyclic shift	Timing advance	Voice tests	
MCC	RSRP Rx(0) dBm	Serving RSRP (dBm)	antennas	PRACH Tx power (dBm)	Temporary C-RNTI	Blocked calls	
MNC	RSRP Rx(1) dBm	Serving RSRQ (dB)	Number of Rx antennas		MCS	Dropped calls	
Physical cell ID	RSRP dBm	Detected cells PCI			TPC for PUSCH	FTP transfers	
DL E-ARFCN	RSRQ Rx(0) dBm	Neighbor cell count	Transmission mode		Hopping flag	FTP throughput (kbps)	
UL E-ARFCN	RSRQ Rx(1) dBm]	Spatial rank		UL delay]	
DL BW	RSRQ dBm	N1 PCI	RB allocation for		CQI request	HTTP transfer	
Band indicator	SINR Rx(0) dB	N1 RSRP (dBm)	slot 0 (%)		RB assignment	HTTP throughput	
Allowed access	SINR Rx(1) dB	N1 RSRQ (dB)	RB allocation for		RACH procedure		
		N2 PCI	slot 1 (%)		type		
		N2 RSRP (dBm)	Frequency		RNTI type		
		N2 RSRQ (dB)	selective PMI		RNTI value		
		N3 PCI	PMI index				
	N3 RSRP (dBm) Stream 0 TBS (bits)						
		N3 RSRQ (dB)	Stream 0 modulation Traffic-to-pilot block ratio				
		N4 PCI					
		N4 RSRP (dBm)					
		N4 RSRQ (dB)					
			Stream 1 TBS (bits)				
			Stream 1 modulation				
			PB				

CDMA Signal Quality	CDMA Serving and Neighbor Parameters	EV-DO-Serving Site Parameters	1xEV-DO Serving and Neighbor Parameters	EV-DO Data Parameters	Summary Parameters	Protocol
RF mode	Active PNs	Channel	Active PNs	RLP Tx throughput	Satellites visible	CDMA Layer 3
CDMA Rx state	Active PN 1 pilot	RF mode	Active PN 1 pilot	(kbps)	Satellites tracked	EV-DO Layer 3
Phone state	Active PN 1 Ec/lo (dB)	Band class	Active PN 1 Ec/lo (dB)	RLP Tx burst size (kb)	Voice tests	
Current channel	Active PN 2 pilot	AT state	Active PN 2 pilot	AT requested DRC	Blocked calls	
Code channel	Active PN 2 Ec/ lo (dB)	Serving PN	Active PN 2 Ec/ lo (dB)	rate	Dropped calls	
Pilot base	Active PN 3 pilot	Serving SINR	Active PN 3 pilot	ARQ effective	FTP transfers	
Handoff state	Active PN 3 Ec/ lo (dB)	UATI	Active PN 3 Ec/ lo (dB)	receive rate	FTP throughput (kbps)	
Tx gain adjust (dBm)	Candidate PNs	UATI color code	Candidate PNs	RLP Rx throughput (kbps)		
Rx power (dBm)	Neighbor PNs	Rx0 power (dBm)	Neighbor PNs		HTTP transfer	
Agg Ec/lo (dB)		Rx1 power (dBm)		RLP Rx burst size (kb)	HTTP throughput (kbps)	
Tx power (dBm)		Tx power (dBm)				
FER						

	GPRS/EDGE		HSDPA	HSUPA	Summary	
GSM Parameters	Parameters	UMTS Parameters		Parameters	Parameters	WiFi
ARFCN	C/I	UARFCN	AVG MAC rate	TTI In Use	Satellites visible	BSSID
BCCH	EGPRS DL CS	Cell ID	AVG schedule rate	Primary E-RNTI	Satellites tracked	SSID
BSIC	EGPRS UL CS	RRC state	AVG served rate	Secondary E-RNTI	Voice tests	Frequency
Cell ID	EDGE support	Rx power	Modulation scheme	HSUPA HARQ throughput (kBps)	Blocked calls	Signal strength (dBm)
MCC	ACC burst type	Tx power	DL HS-PDSCH BLER		Dropped calls	Capabilities (such as the security
MNC	Allocation type	SC MCC	DL HSDPA	HSUPA BLER (%)	FTP transfers	setting)
LAC	Control ACK type	SC MNC	throughput	Happy bits (%)	FTP throughput	
Mode	DL TS allocation	RLC DL throughput	CQI sample count	Not-happy bits (%)	(kbps)	
Rx level full	UL TS allocation	RLC UL throughput	CQI valid count		HTTP transfer	
Rx level sub	ACK mode	Ec/lo	CQI average		HTTP throughput	
Rx qual full	DL CS	BLER	% ACKS		(kbps)	
Rx qual sub	DL TBF state	No trans channels	& NACKS		IMEI	
Timeslot	DL TFI	Trans channel ind	% DTX		MEID	
Timing advance	UL CS	Scrambling Code				
Tx vevel	UL TBF state	RSCP				
C1	UL TFI	RLC TX and TX				
C2	DL LLC throughput	throughput				
DSF	DL RLC/MAC	MAC TX and RX				
DTX	throughput	throughput				
FER	UL LLC throughput					
HSN	UL RLC/MAC					
HOP LIST	throughput					
HOP FLAG	DL RTX RLC block rate					
MAIO	UL RTX RLC blocks					
RLT	UL TX RLC blocks					
	UL TX RLC blocks					

TrueSite Handheld Lite

Lite meets the needs of customers who don't require all of the sophisticated functionality of the full version. Lite is available on select devices listed in the Supported Devices table and provides the following capabilities:

- · Recording and payback
- Test sequencer (voice and FTP tests)
- Main parameters screen
- Customization of main parameters screen
- Google Maps display for outdoors
- · TestMeNow mode including web test
- Cell-site database support
- Forcing features
- · WiFi measurements
- · Protocol display

The lite version can be upgraded to the full version. Please refer to the ordering information for details on how to order the lite and upgrade versions and which devices are supported.

Android Releases

LITE and PRO release 1.39.2 versions support Android versions 4.1.1 through 4.4.2. PLAY versions support Android versions through 5.2. Unless listed in the ordering section, all tablets are customer supplied. Viavi has tested the following tablets:

- Google Nexus 7
- Google Nexus 10
- Samsung GT-N5120
- Samsung GT-N8020
- Samsung GT-P5210
- Samsung SGH-I497 (limited to controlling the slave phone and receiver and to making real-time troubleshooting measurements)
- Samsung SGH-I957
- Samsung SM-T807

Support and Update Services (SUS)

A SUS license, required with all TrueSite orders, provides support and software updates for 1-year, 2-year, 3-year, or custom durations.

Ordering Options

Please refer to the configuration guide or contact Viavi for details about all of the supported devices and software options.

Description	Part Number
TRUESITE Software Options	
POLQA voice MOS measurement addition to FTA software	E5643B-100
TrueSite VoLTE measurements fixed software license	E5643B-150
Trusite eMBMS measurements fixed software license	E5643B-160
RANAdvisor TrueSite Indoor Test Manager	E5643B-120
RANAdvisor TrueSite indoor fault detection tools	E5643B-121
RANAdvisor TrueSite receiver measurements support	E5643B-122
Lite TrueSite fixed software license	E5643B-951
Pro TrueSite fixed software license	E5643B-950
Pro TrueSite floating software license	E5643B-960
Lite TrueSite floating software license	E5643B-961
Indoor Test Manager floating software license	E5643B-962
RF tools floating software license	E5643B-963
Receiver measurements floating software license	E5643B-964
POLQA voice quality floating software license	E5643B-965
VoLTE measurements floating software license	E5643B-967
eMBMS measurements floating software license	E5643B-968
Pro TrueSite fixed to floating software license upgrade	E5643B-960U
Lite TrueSite fixed to floating software license upgrade	E5643B-961U
Indoor Test Manager fixed to floating software license upgrade	E5643B-962U
RF Tools fixed to floating software license upgrade	E5643B-963U
Receiver measurements fixed to floating software license upgrade	E5643B-964U
POLQA voice quality fixed to floating software license upgrade	E5643B-965U
VoLTE measurements fixed to floating software license upgrade	E5643B-967U
eMBMS measurements fixed to floating software license upgrade	E5643B-968U

Support and Update Services (SUS) (includes TrueSite asset management and StrataSync test data management licenses)

1-year SUS	E5643B-901
2-years SUS	E5643B-903
3-years SUS	E5643B-902

Floating options can easily transfer among different phones and tablets registered in your StrataSync account. Upgrades to floating options are also available for existing fixed licenses.

Contact Us

+1 844 GO VIAVI (+1 844 468 4284)

To reach the Viavi office nearest you, visit viavisolutions.com/contacts.

© 2016 Viavi Solutions Inc. Product specifications and descriptions in this document are subject to change without notice. truesite-solution-sg-nsd-tm-ae 30173348 912 0316