

PROLABS - XFP-10G-BX-U-40KM-C

10 Gigabit XFP Tx1270nm/Rx1330nm Bi-directional Transceiver

XFP-10G-BX-U-40KM-C Overview

PROLABS's XFP-10G-BX-U-40KM-C 10 GBd XFP optical transceivers are designed for the IEEE 802.3ae 10GBASE-LR, 10GBASE-LW, 10GFC and OC192 interconnects. The XFP-10G-BX-U-40KM-C are compliant with the XFP Multi-Source Agreement (MSA) Specification. The Digital diagnostics functions are available via 2-wire serial interface, as specified in the XFP MSA.

Product Features

- Up to 9.95 GBd to 10.7 GBd bit rates.
- Compliant with IEEE 802.3ae, 10GBASE-ER/EW, 10GFC, OC192 application.
- Compliant with XFP MSA.
- 30 pin XFP compatible connector.
- Standard bail mechanism for consistent installation and removal
- Built-in digital diagnostic functions.
- Hot Pluggable XFP footprint.
- Un-cooled DFB laser
- Simplex LC connector
- Up to 40km on SMF
- RoHS Compliance
- Operating temperature range: 0°C to 70°C.

Applications

- 10GBASE-ER 10G Ethernet
- 10GBASE-EW 10G Ethernet
- 10G Fiber Channel

Ordering Information

Oracining Information	/II
Part Number	Description
XFP-10G-BX-U-40KM-	10 Gigabit XFP BIDI, TX1270nm/RX1330nm, LC Connectors 40km on SMF, with DOM
С	function.

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Storage Ambient Temperature	T_S	- 40		85	${\mathbb C}$	
Supply Voltage 3.3V	V _{CC 3}	- 0.5		4	V	

General Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Data Rate	DR	9.95		10.7	GBd	10GBASE-LR/LW 1200-SM-LL-L
Bit Error Rate	BER			10 ⁻¹²		
Total Power Consumption	Р			2	W	
Supply Voltage - 3.3V	V _{CC 3}	3.13		3.45	V	Operating Environment
Supply Current -V _{CC 3} supply	1 _{CC 3}			550	mA	
Case Operating Temperature	T_C	0		70	$^{\circ}$	

Link Distances

Parameter	Fiber Type	Distance Range (Km)
9.95 – 10.7 GBd	9/125um SMF	40

Optical Characteristics - Transmitter V_{CC} ₃=3.13V to 3.45V, T_{C} =0 \mathcal{C} to 70 \mathcal{C}

Parameter	Symbol	Min	Тур	Max	Unit		Remarks
Optical Wavelength	λ	1260	1270	1280	nm		
Optical Power	P_{OUT}	- 3		4	dBm	Average	
Launch Power of OFF Transmitter	P _{OUT_OFF}			- 30	dBm	Average	
Side Mode Suppression Ratio	SMSR	30			dB		
Optical Extinction Ratio	ER	6			dB		
Relative Intensity Noise	RIN			- 120	dB/Hz		
Transmitter Dispersion Penalty	TDP		•	3.2	dB		
Transmitter Jitter		Accordir	ng to IEEE 80	2.3ae requir	ement		

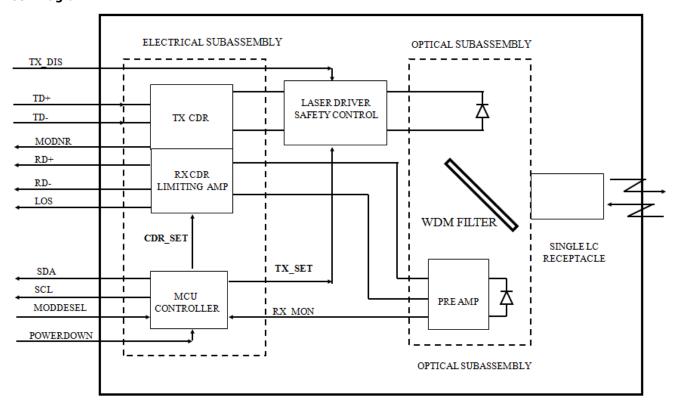
Optical Characteristics - Receiver V_{CC_3} =3.13V to 3.45V, T_C =0 $\mathcal C$ to 70 $\mathcal C$

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Center Wavelength Range	λ_{C}	1320	1330	1340	nm	
Optical Input Power	P_{IN}	-19		-9	dBm	Average
Receiver Sensitivity(OMA) @ 10.3Gb/s	P _{SENS1}			- 19.2	dBm	Measured with worst ER: BER<10 ⁻¹² 2 ³¹ -1 PRBS
Stressed Receiver Sensitivity (OMA) @ 10.3Gb/s	P _{SENS2}			- 11.3	dBm	IEEE 802.3ae
LOS De-Assert	LOS_D			-22	dBm	
LOS Assert	LOS_A	- 42			dBm	
LOS Hysteresis		0.5		•	dB	

Electrical Characteristics – Transmitter $V_{CC\ 3}$ =3.13V to 3.45V, T_{C} =0 $^{\circ}$ to 70 $^{\circ}$

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Input differential impedance	R_{in}		100		Ω	After internal AC coupling
Differential data input swing	V _{IN PP}	120		820	mV	
Transmit Disable Voltage	V_D	2		V _{CC}	V	Or open circuit
Transmit Enable Voltage	V_{EN}	GND		GND+0.8	V	
Transmit Disable Assert Time				10	US	

Electrical Characteristics – Receiver V_{CC} ₃=3.13V to 3.45V, T_{C} =0 \mathcal{C} to 70 \mathcal{C}


Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Differential data output swing	V _{OUT PP}	340	650	850	mV		
Data output rise time	T_R			38	ps	20%-80%	
Data output fall time	T_F			38	ps	20%-80%	
LOS Fault	V _{LOS F}	V _{CC} -0.5		V _{CC HOST}	V		
LOS Normal	V _{IOS N}	GND		GND+0.5	V		

Digital Diagnostic

PROLABS's XFP-10G-BX-U-40KM-C incorporates a XFP compliant 2-wire management interface which is used for serial ID, digital diagnostics, and certain control functions. It is modeled on the SFF-8472 Rev 9.3 specification modified to accommodate a single 2-wire interface address. In addition to the basic I²C read/write functionality the modules support packet error checking that, when enabled, allows the host system to confirm the validity of any read data. Details of the protocol and interface are explicitly described in the MSA. And the digital diagnostic functions via a 2-wire serial interface can provide real-time access to following operating parameters:

- a. Transceiver Temperature
- b. Laser Bias Current
- c. Transmitted Optical Power
- d. Received Optical Power
- e. Transceiver Supply Voltage

Block Diagram

Transmitter Section:

The Laser Driver accept differential input data and provide bias and modulation currents for driving a laser. An automatic power control (APC) feedback loop is incorporated to maintain a constant average optical power. Laser in an eye safe optical subassembly (OSA) mates to the fiber cable. TX CDR is used to overcome host board and connector signal degradations by reshaping, regenerating, and attenuating jitter.

TXDIS:

TX_DIS is a input pin. When TX_DIS is asserted High, the XFP module transmitter output must be turned off.

Receiver Section:

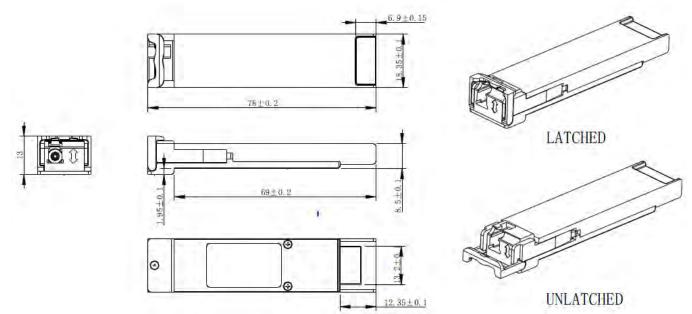
The Receiver utilizes a PIN detector integrated with a trans-impedance preamplifier in an OSA. The OSA is connected to a limiting Amplifier which providing post-amplification quantization, and optical signal detection. The limiting amplifier is AC coupled to the Trans-impedance amplifier , with internal 100ohm differential termination. RX CDR is used to overcomes host board degradations by reshaping, regenerating, and attenuating jitter.

LOS:

The LOS of an output pin, when LOS is high, it indicates insufficient optical power for reliable signal reception.

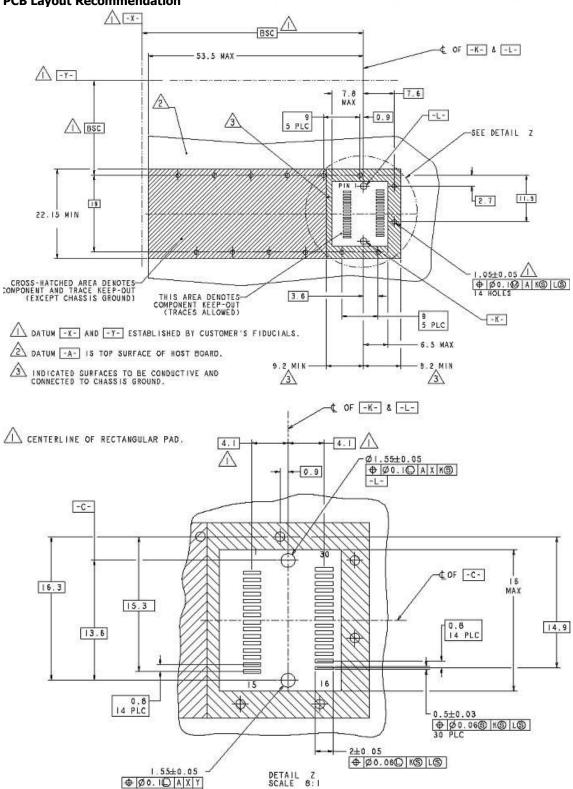
MODNR

The MODNR is an output pin that when High, indicates that the module has detected a condition that renders transmitter and or receiver data invalid, shall consist of logical OR of the following signals:


- a. Transmit Signal Conditioner Loss of Lock
- b. Transmitter Laser Fault
- c. Receiver Signal Conditioner Loss of Lock

Controller Section

The micro controller unit initializes the control register of laser driver, limiting amplifier and CDR. And monitors the running information from the laser driver, limiting amplifier and CDR. Then report these information to the customer.

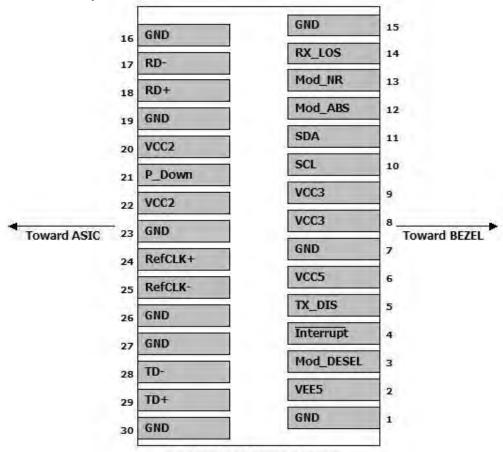

Dimensions

ALL DIMENSIONS ARE ± 0.2 mm UNLESS OTHERWISE SPECIFIED

PCB Layout Recommendation

Pin Assignment – Pin 1 to Pin 23

PIN #	Symbol	Logic	Description	Remarks
				Module ground pins
				(GND) are isolated
1	GND		Module Ground	from the module
'	OND		Wodale Ground	case and chassis
				ground within the
0	\/EEE			module
2	VEE5		Optional – 5.2 Power Supply (Not required)	Not required
3	Mod-Desel	LVTTL-I	Module De-select, when held low allows the module to respond to 2-wire serial interface commands	
				Open collector,
				should be pulled up
			Indicates presence of an important condition	with
4	Interrupt	LVTTL-O	which can be read over the serial 2-wire	$4.7 \text{k} \Omega - 10 \text{k} \Omega$ on
			interface	host board to a
				voltage between
			Transmitter Disable, Transmitter laser source	3.15V and 3.6V
5	TX_DIS	LVTTL-I	turned off	
6	VCC5		+5V Power Supply	Not required
7	GND		Module Ground	Same as Pin# 1
8	VCC3		+3.3V Power Supply	
9	VCC3		+3.3V Power Supply	
10	SCL	LVTTL-I	Serial 2-wire interface clock	Same as Pin# 4
11	SDA	LVTTL-I/O	Serial 2-wire interface data line	Same as Pin# 4
12	Mod_Abs	LVTTL-O	Module Absent, Indicates module is not present. Grounded in the module	Same as Pin# 4
13	Mod_NR	LVTTL-O	Module Not Ready, Indicates Module operating fault	Same as Pin# 4
14	RX_LOS	LVTTL-O	Receiver Loss of Signal indicator	Same as Pin# 4
15	GND		Module Ground	Same as Pin# 1
16	GND		Module Ground	Same as Pin# 1
17	RD-	CML-O	Receiver inverted data output	
18	RD+	CML-O	Receiver non-inverted data output	
19	GND		Module Ground	Same as Pin# 1
20	VCC2		+1.8V Power Supply	Not required
			Power Down, When high, places the module	
			in the low power stand-by mode and on the	
21	P_Down/RST	LVTTL-I	falling edge of P_Down initiates a module rest	
∠ I	1 _DOMINUS I	LV (L-	Reset, The falling edge initiates a complete	=
			reset of the module including the 2-wire	
			serial interface, equivalent to a power cycle	
22	VCC2		+1.8V Power Supply	Not required
23	GND		Module Ground	Same as Pin# 1



Pin Assignment – Pin 24 to Pin 30

PIN #	Symbol	Logic	Description	Remarks
24	RefCLK+	PECL-I	Reference Clock non-inverted input, AC coupled on the host board	Not required
25	RefCLK-	PECL-I	Reference Clock inverted input, AC coupled on the host board	Not required
26	GND		Module Ground	Same as Pin# 1
27	GND		Module Ground	Same as Pin# 1
28	TD-	CML-I	Transmitter inverted data input	
29	TD+	CML-I	Transmitter non-inverted data input	·
30	GND		Module Ground	Same as Pin# 1

Electrical Pad Layout

PIN OUT ON HOST BOARD

References

1. 10 Gigabit Small Form Factor Pluggable Module (XFP) Multi-Source Agreement (MSA), Rev 4.5 - August 2005.