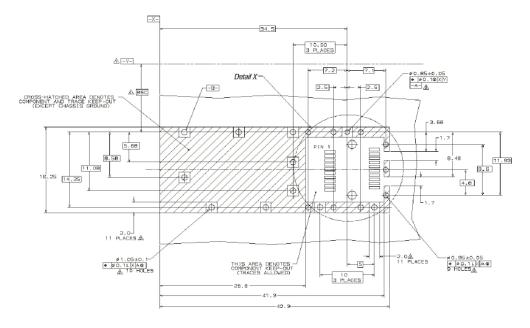


## PROLABS SFP-10G-T-C

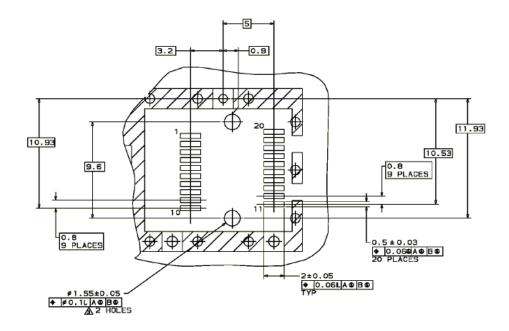
### **Overview**

The PROLABS SFP-10G-T-C copper transceiver module is a high performance integrated duplex data link for bi-directional communication over copper cable. It is specifically designed for high speed communication links that require 10 Gigabit Ethernet over Cat 6a/7 cable. This is the first SFP+ transceiver that offers 10 Gb/s communication over this type of media.

### **Product Features**


- Supports Links up to 30m using Cat 6a/7 Cable
- SFF-8431 and SFF-8432 MSA Compliant
- ▶ IEEE 802.3az Compliant
- Low Power Consumption (2.5W max @ 30m)
- Fast Retrain EMI Cancellation Algorithm
- Low EMI Emissions
- ▶ 12C 2 Wire Serial Interface for Serial Id and Phy Registers
- Auto-negotiates with other 10GBase-T-NC PHYs
- Automatic Detection and Correction of Wiring and Polarity Swaps
- Robust Die Cast Housing
- Bail Latch Style ejector mechanism
- Unshielded and Shielded cable support

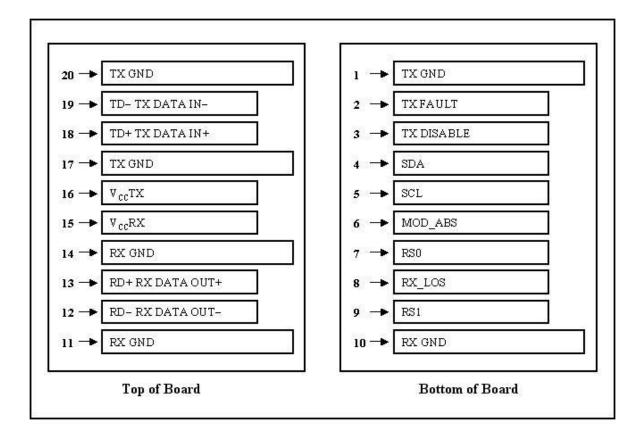
### **General Specifications**


| Symbol           | Min                                                               | Тур                                                      | Max                                                                        | Unit                                                                                                                 | Remarks                                                                                                                                                        |
|------------------|-------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BER              |                                                                   |                                                          | 10 <sup>-12</sup>                                                          |                                                                                                                      |                                                                                                                                                                |
| T <sub>OP</sub>  | 0                                                                 |                                                          | 70                                                                         | °C                                                                                                                   | Case temperature                                                                                                                                               |
| T <sub>STO</sub> | - 40                                                              |                                                          | 85                                                                         | °C                                                                                                                   | Ambient temperature                                                                                                                                            |
| -                | 5                                                                 |                                                          | 95                                                                         | %                                                                                                                    | Non condensing                                                                                                                                                 |
| $I_S$            |                                                                   | 2.3                                                      | 2.5                                                                        | W                                                                                                                    |                                                                                                                                                                |
| V <sub>CC</sub>  | 3                                                                 | 3.3                                                      | 3.6                                                                        | V                                                                                                                    |                                                                                                                                                                |
|                  | BER<br>T <sub>OP</sub><br>T <sub>STO</sub><br>-<br>I <sub>S</sub> | $BER$ $T_{OP} \qquad 0$ $T_{STO} \qquad -40$ $- 5$ $I_S$ | $BER$ $T_{OP} \qquad 0$ $T_{STO} \qquad -40$ $- \qquad 5$ $I_S \qquad 2.3$ | BER $10^{-12}$ $T_{OP}$ 0         70 $T_{STO}$ -40         85           -         5         95 $I_S$ 2.3         2.5 | BER $10^{-12}$ $T_{OP}$ 0         70         °C $T_{STO}$ -40         85         °C           -         5         95         % $I_S$ 2.3         2.5         W |



### **PCB Layout Recommendation**





Datum and Basic Dimension Established by Customer Rads and Vias are Chassis Ground, 11 Places Chrough Holes are Unplated





### **Electrical Pad Layout**







### **Pin Assignment**

| PIN # | Symbol             | Description                                                   | Remarks                                                                      |  |  |
|-------|--------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| 1     | V <sub>EET</sub>   | Transmitter ground (common with receiver ground)              | Circuit ground is isolated from chassis ground                               |  |  |
| 2     | T <sub>FAULT</sub> | Transmitter Fault.                                            |                                                                              |  |  |
| 3     | T <sub>DIS</sub>   | Transmitter Disable. Laser output disable on high or open     | Disabled: T <sub>DIS</sub> >2V or<br>open<br>Enabled: T <sub>DIS</sub> <0.8V |  |  |
| 4     | SDA                | Data line for serial ID                                       | Should Be pulled up with<br>4.7k – 10k ohm on host                           |  |  |
| 5     | SCL                | Clock line for serial ID                                      | board to a voltage<br>between<br>2V and 3.6V                                 |  |  |
| 6     | MOD_ABS            | Module Absent. Grounded within the module                     |                                                                              |  |  |
| 7     | RS0                | No connection required                                        |                                                                              |  |  |
| 8     | LOS                | Loss of Signal indication. Logic 0 indicates normal operation | LOS is open collector output                                                 |  |  |
| 9     | RS1                | No connection required                                        | Circuit ground is isolated                                                   |  |  |
| 10    | V <sub>EER</sub>   | Receiver ground (common with transmitter ground)              | <ul> <li>Circuit ground is isolated</li> <li>from chassis ground</li> </ul>  |  |  |
| 11    | V <sub>EER</sub>   | Receiver ground (common with transmitter ground)              |                                                                              |  |  |
| 12    | RD <b>-</b>        | Receiver Inverted DATA out. AC coupled                        |                                                                              |  |  |
| 13    | RD+                | Receiver Non-inverted DATA out. AC coupled                    |                                                                              |  |  |
| 14    | $V_{\text{EER}}$   | Receiver ground (common with transmitter ground)              | Circuit ground is isolated from chassis ground                               |  |  |
| 15    | V <sub>CCR</sub>   | Receiver power supply                                         |                                                                              |  |  |
| 16    | V <sub>CCT</sub>   | Transmitter power supply                                      |                                                                              |  |  |
| 17    | V <sub>EET</sub>   | Transmitter ground (common with receiver ground)              | Circuit ground is<br>connected to chassis<br>ground                          |  |  |
| 18    | TD+                | Transmitter Non-Inverted DATA in. AC coupled                  | 0                                                                            |  |  |
| 19    | TD-                | Transmitter Inverted DATA in. AC coupled                      |                                                                              |  |  |
| 20    | V <sub>EET</sub>   | Transmitter ground (common with receiver ground)              | Circuit ground is<br>connected to chassis<br>ground                          |  |  |

#### References

- 1. IEEE standard 802.3ae. IEEE Standard Department, 2005.
- 2. Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module "SFP+" SFF-8431
- 3. Digital Diagnostics Monitoring Interface for Optical Transceivers SFF-8472.



#### **RJ45** Connector

RJ45 connector shall support shielded and unshielded cables. Also, the connector is mechanically robust enough and designed to prevent loss of link, when the cable is positioned or moves in different angles. The connector shall pass the **"wiggle" RJ45 connector operational stress test.** During the test, after the cable is plugged in, the cable is moved in circle to cover all 360 deg in the vertical plane, while the data traffic is on. There shall be no link or data loss.

#### **Latch Requirements**

The SFP transceiver latch should be mechanically robust and designed to prevent unintentional unlatching during insertion or extraction of the transceiver cable. The transceiver is designed with a "Bail type ejector latch mechanism" that allows the SFP module to be easily released from the cage, when the adjacent SFP ports in both rows are also populated and regardless of whether the SFP module is placed in the lower or upper row. The latch shall also pass the "wiggle" RJ45 connector stress test.

| Measurement               | Minimum | Maximum | Units   | Comments                                          |
|---------------------------|---------|---------|---------|---------------------------------------------------|
| SFP transceiver           | N/A     | 18      | Newtons | Measure without the force from any cage kick out  |
| insertion                 |         |         |         | springs. Module to be inserted into nominal cage. |
| SFP transceiver           | N/A     | 12.5    | Newtons | Measure without the force from any cage kick out  |
| extraction                |         |         |         | springs. Module to be inserted into nominal cage. |
| SFP transceiver           | 90      | 170     | Newtons | No functional damage to module below 90N          |
| retention                 |         |         |         |                                                   |
| Insertion/removal cycles, | 50      | N/A     | Cycles  | No functional damage to module, cage or           |
| SFP transceiver           |         |         | -       | connector                                         |

#### Dimensions





#### Safe Usage Advice

The 10G BASE-T SFP+ consumes more power than a standard SFP+ and so ProLabs recommends filling no more than 30% of the switch's allotted ports.

ProLabs recommends, where possible, leaving the adjacent port empty when using a 10G BASE-T SFP+  $\ensuremath{\mathsf{TSFP}}\xspace$ 

The SFP+ 10G BASE-T can get hot to the touch due to the higher power consumption. This will not damage the SFP+ or SFP+ Port but care should be taken when handling a part when it is removed from a switch after time in operation.