

PROLABS-SFP-10G-SR-C

10GBd SFP+ Short Wavelength (850nm) Transceiver

SFP-10G-SR-C Overview

PROLABS's SFP-10G-SR-C SFP optical transceivers are based on 10G Ethernet IEEE 802.3ae standard and SFF 8431 standard, and provide a quick and reliable interface for the 10G Ethernet application. The Digital diagnostics functions are available via 2-wire serial bus specified in the SFF 8472.

Product Features

- Up to 10.5 GBd bi-directional data links
- Compliant with IEEE 802.3ae 10GBASE-SR/SW
- Compliant with SFF8431
- Hot-pluggable SFP+ footprint
- 850nm VCSEL laser transmitter
- Duplex LC connector
- Built-in digital diagnostic functions
- Up to 300m on OM3 MMF
- Single power supply 3.3V
- RoHS Compliance
- Class 1 laser product complies with EN 60825-1
- Operating temperature range: 0°C to 70°C.
- Applications
- 10GBASE-SR/SW Ethernet

Ordering Information

Part Number	Description					
SFP-10G-SR-C	10GBASR-SR/SW SFP	P+ 850nm L	C Connectors	300m on	MMF, with DOM	
	function.					

General Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Data Rate	DR		10.3125		GBd	IEEE 802.3ae
Bit Error Rate	BER			10 ⁻¹²		
Operating Temperature	T _{OP}	0		70	°C	Case temperature
Storage Temperature	T _{STO}	- 40		85	°C	Ambient temperature
Supply Current	Is		180	220	mA	For electrical power interface
Input Voltage	V _{CC}	3	3.3	3.6	V	
Maximum Voltage	V _{MAX}	- 0.5		4	V	For electrical power interface

Link Distances

Parameter	Fiber Type	Modal Bandwidth @ 850nm (MHz-km)	Distance Range (m)
	62.5/125um MMF	160	2-26
	62.5/125um MMF	200	2-33
9.95 – 10.5 GBd	50/125um MMF	400	2-66
	50/125um MMF	500	2-82
	50/125um MMF	2000	2-300

Optical Characteristics – Transmitter

V_{cc} =3V to 3.6V, T_c =0°C to 70°C						
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Output Optical Power	P _{TX}	– 5		- 1	dBm	Class 1 Product
Optical Center Wavelength	λ _C	840		860	nm	
Optical Modulation Amplitude	OMA		_ 1.5dB			IEEE 802.3ae
Extinction Ratio	ER	3	5.5		dB	
Spectral Width (RMS)	$\Delta\lambda$			0.45	nm	
Relative Intensity Noise	RIN			- 128	dB/Hz	
Transmitter Dispersion Penalty	TDP			3.9	dB	
Transmitter Jitter		Ac	cording to	IEEE 802	.3ae requ	irement
Launch Power of OFF Transmitter	P _{OUT_OFF}			- 30	dBm	Average

Optical Characteristics – Receiver

$\dot{V_{cc}}$ =3V to 3.6V, T_c =0°C to 70°C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Optical Center Wavelength	λc	840		860	nm	
Receiver Sensitivity (OMA)@ 10.3GBd	R _{X_SEN1}			- 11.1	dBm	Measured with worst ER: BER<10 ⁻¹² 2 ³¹ -1 PRBS
Stressed Receiver Sensitivity in OMA @ 10.3Gb/s	P _{SENS2}			- 7.5	dBm	IEEE 802.3ae
Maximum Input Power	P _{IN}	0.5			dBm	
Receiver Reflectance	TR _{RX}			- 12	dB	
LOS Assert	LOSA	- 30			dBm	
LOS De-Assert	LOS _D			- 12	dBm	
LOS Hysteresis		0.5			dB	

Electrical Characteristics – Transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Input differential impedance	R _{IN}		100		Ω	Non condensing
Single ended data input swing	V _{IN PP}	250		800	mV	
Transmit disable voltage	V _D	2		V _{cc}	V	
Transmit enable voltage	V _{EN}	V _{EE}		V _{EE} +0.	V	
				8		

Electrical Characteristics – Receiver

$V_{cc}=3V$ to 3.6V, $T_{c}=0$ °C to 70 °C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Single ended data output swing	V _{OUT_PP}	150	300	425	mV	
Data output rise time (20%-80%)	T_R		30		ps	
Data output fall time (20%-80%)	T _F		30		ps	
LOS Fault	V _{LOS_Fault}	2		V _{CC_HO}	V	
				ST		
LOS Normal	V_{LOS_normal}	V_{EE}		V _{EE} +0.	V	
				5		

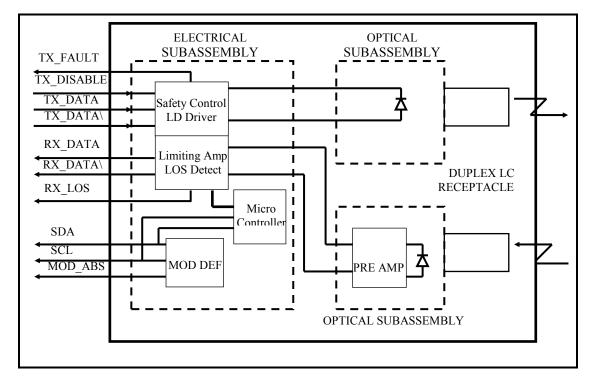
Digital Diagnostic Functions

SFP-10G-SR-C support the 2-wire serial communication protocol as defined in the SFF 8472. Digital diagnostic information are accessible over the 2-wire interface at the address 0xA2. Digital Diagnostics for SFP-10G-SR-C are internally calibrated by default. A micro controller unit inside the transceiver gathers the monitoring information and reports the status of transceiver.

Transceiver Temperature, internally measured, represented as a 16 bit signed twos complement value in increments of 1/256 degrees Celsius, Temperature accuracy is better than ±3 degrees Celsius over specified operating temperature and voltage.

Transceiver Supply Power, internally measured, represented as a 16 bit unsigned integer with the voltage defined as the full 16 bit value (0 - 65535) with LSB equal to 100 µVolt, yielding a total range of 0 to +6.55 Volts.

Transceiver TX bias current, internally measured, represented as a 16 bit unsigned integer with the current defined as the full 16 bit value (0 – 65535) with LSB equal to 2 μ A, yielding a total range of 0 to 131mA. Accuracy is better than ±10% over specified operating temperature and voltage.


Transceiver TX output power, internally measured, represented as a 16 bit unsigned integer with the power defined as the full 16 bit value (0 – 65535) with LSB equal to 0.1 μ W. Data is assumed to be based on measurement of laser monitor photodiode current. Accuracy is better than ±3dB over specified temperature and voltage. Data is not valid when the transmitter is disabled.

Transceiver RX received optical power, internally measured, represented as a 16 bit unsigned integer with the power defined as the full 16 bit 35 value (0 – 65535) with LSB equal to 0.1 μ W. Accuracy is better than ±3dB over specified temperature and voltage.

Parameter	Symbol	Accuracy	Units	Repor	t Range	Unit	Remarks		
Internal Calibration									
Temperature	T _{MON}	±3	°C	– 5	75	°C			
Voltage	V _{MON}	±0.1	V	2.9	3.7	V			
Bias Current	I _{MON}	±10	%	1	15	mA			
Tx Power	P _{MON}	±3	dB	- 10	0	dBm			
Rx Power	P _{MON}	±3	dB	- 20	0	dBm			

Block Diagram of Transceiver

Transmitter Section

The VCSEL driver accept differential input data and provide bias and modulation currents for driving a laser. An automatic power-control (APC) feedback loop is incorporated to maintain a constant average optical power. 850 nm VCSEL in an eye safe optical subassembly (OSA) mates to the fiber cable.

TX_DISABLE

The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on within 1ms when TX_DISABLE is low (TTL logic "0").

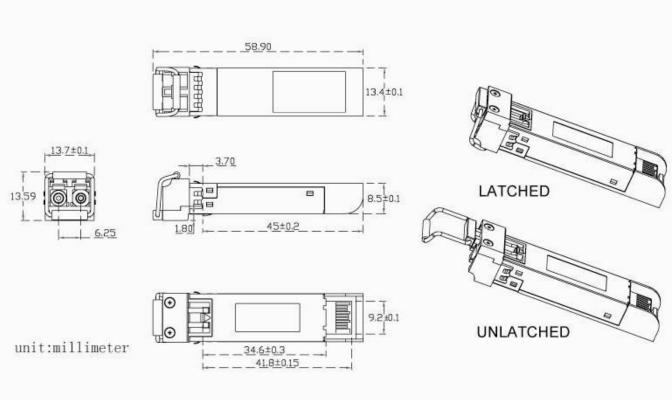
TX_FAULT

When the TX_FAULT signal is high, output indicates a laser fault of some kind. Low indicates normal operation.

Receiver Section

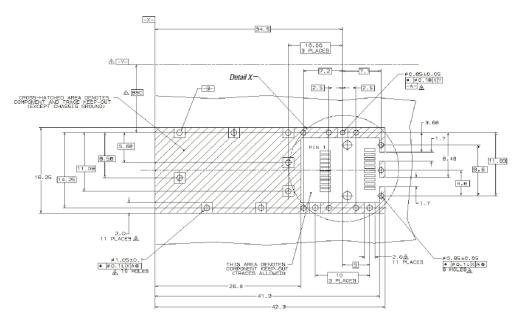
The receiver utilizes a PIN detector integrated with a trans-impedance preamplifier in an OSA. This OSA is connected to a Limiting Amplifier which providing post-amplification quantization, and optical signal detection. The limiting Amplifier is AC-coupled to the transimpedance amplifier, with internal 100Ω differential termination.

Receive Loss (RX_LOS)

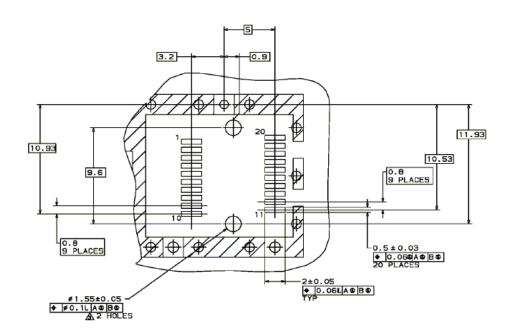

The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.

Controller Section

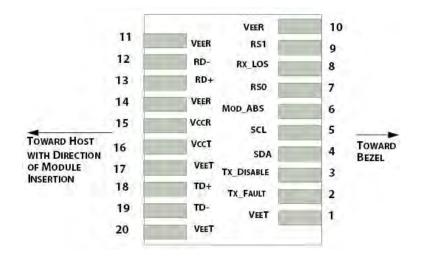
The micro controller unit monitors the operation information of LD driver and Limiting Amplifier. And report these status to the customer.

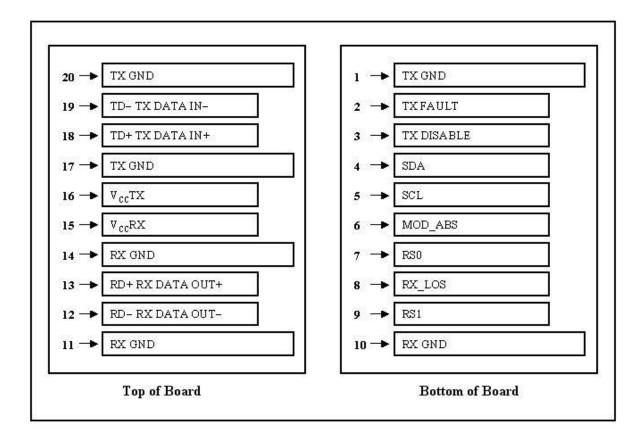

Dimensions

ALL DIMENSIONS ARE ±0.2mm UNLESS OTHERWISE SPECIFIED UNIT: mm



PCB Layout Recommendation


<u>∕D</u>atum and Basic Dimension Established by Customer <u>∕R</u>ads and Vias are Chassis Ground, 11 Places


A Through Holes are Unplated

Electrical Pad Layout

Pin Assignment

PIN #	Symbol	Description	Remarks
1	V _{EET}	Transmitter ground (common with receiver ground)	Circuit ground is isolated from chassis ground
2	T _{FAULT}	Transmitter Fault.	u
3	T _{DIS}	Transmitter Disable. Laser output disable on high or open	Disabled: T _{DIS} >2V or open Enabled: T _{DIS} <0.8V
4	SDA	Data line for serial ID	Should Be pulled up with
5	SCL	Clock line for serial ID	4.7k – 10k ohm on host
6	MOD_ABS	Module Absent. Grounded within the module	board to a voltage between 2V and 3.6V
7	RS0	No connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation	LOS is open collector output
9	RS1	No connection required	·
10	V_{EER}	Receiver ground (common with transmitter ground)	Circuit ground is isolated
11	V _{EER}	Receiver ground (common with transmitter ground)	from chassis ground
12	RD–	Receiver Inverted DATA out. AC coupled	
13	RD+	Receiver Non-inverted DATA out. AC coupled	
14	V_{EER}	Receiver ground (common with transmitter ground)	Circuit ground is isolated from chassis ground
15	V _{CCR}	Receiver power supply	
16	V _{CCT}	Transmitter power supply	
17	V_{EET}	Transmitter ground (common with receiver ground)	Circuit ground is connected to chassis ground
18	TD+	Transmitter Non-Inverted DATA in. AC coupled	
19	TD–	Transmitter Inverted DATA in. AC coupled	
20	V_{EET}	Transmitter ground (common with receiver ground)	Circuit ground is connected to chassis ground

References

IEEE standard 802.3ae. IEEE Standard Department, 2005.
Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module "SFP+" – SFF-8431

3. Digital Diagnostics Monitoring Interface for Optical Transceivers – SFF-8472.